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Abstract—This paper presents a six degree of freedom posi-
tion regression CNN (convolutional neural network) based on
Google’s Inception-V4 CNN. This network is then evaluated
quantitatively and compared to previous state-of-the-art position
regression CNNs. Our model achieves a 22% and 51% relative
improvement compared to previous state-of-the-art methods
for position and orientation accuracy respectively. A modular
system for integrating our model into probabilistic localization
algorithms for accurate kidnap resolution and global metric
initialization in real-time is also introduced and evaluated. This
modular system is able to globally initialize 85% of the time in
under 70ms. If the robot is allowed to rotate in place and capture
multiple views, this rises to 95%.
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1. INTRODUCTION

The ability to globally self-localize in a known area, also
known as the kidnap problem, is an important requirement
for mobile robotics as well as many other areas such as
Structure-from-Motion (SfM) and Virtual or Augmented Re-
ality (VR/AR). Solving the kidnap problem is required in
many scenarios for mobile robotics such as a cleaning person
moving a robot to a different location overnight, or for the task
of long-term mapping. In both of these scenarios, it is vital
for the robot to be able to recover its current location and
continue to perform its job. While there are many approaches
to the kidnap problem that utilize optical range finders [1–
4], these methods suffer under highly repetitive structure even
with large visual differences and are often so computationally
intensive that they are impractical for kidnap resolution in
large scale environments. Additionally, due to the high cost of
optical range finders, we choose to focus our work on global
self-localization using vision and deep learning.

Current state-of-the-art approaches [5–9] to image based
localization still largely rely on hand-crafted image features
such as those generated using scale-invariant feature transform
(SIFT) [10], or oriented FAST and rotated BRIEF (ORB)
[11]. In order to perform localization using these methods, a
database containing position labeled images is often utilized.
Correspondences between a given input image and every
image in the database are calculated and the closest match
is returned. If a 3D model of the scene is available along
with mappings from every 3D point to its corresponding image

features, it is possible to obtain finer location estimates. This
is usually accomplished by using an n-point solver along with
RANSAC [12] as demonstrated by Kukelova et al. in [13]. The
inherent weakness of these approaches is that if few correct
matches are found, localization is not possible.

Recently, some attempts have been made to apply deep
learning to the task of camera localization. PoseNet [14, 15]
formulates the localization task as a six degree-of-freedom
(DoF) regression problem. Alternatively, PlaNet [16] formu-
lates the localization task as a classification problem by
dividing up the earth into distinct cells. So, during inference,
every image is labeled, with some certainty, as belonging
to one of the cells. While PlaNet allows for massive scale
localization, it is largely unusable for mobile robotics as much
finer localization proposals are required. Additionally, PlaNet
is unable to recover orientation. To this end, we decided to
formulate our approach as a regression task similar to PoseNet
rather than a classification task like PlaNet.

Fig. 1. six degree of freedom global localization using our model on our
hallway dataset. Point cloud is included to better visualize localization.

PoseNet, although it is able to recover both orientation and
position, still largely underperformed compared to the state-
of-the-art hand-crafted feature methods such as [5–9]. To this
end, we developed a new position regression network that
provides a 25% relative improvement in position accuracy
and 51% relative improvement in orientation accuracy over
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PoseNet. To achieve this, we make use of a state-of-the-art
image recognition network, Inception-V4 [17], and modify
it to the task of six degree of freedom position regression.
We also introduce a framework for integrating our model
into probabilistic localization frameworks allowing a robot to
perform global metric initialization accurately and in real-time.

2. APPROACH

2.1. Architecture

In order to facilitate higher position regression accuracy, we
decided to explore convolutional neural networks with high
image recognition performance and utilize them for transfer
learning to our task of kidnap resolution. The model that
we use as a base for our network is Google’s Inception-
V4 [17] which is able to achieve a 5% and 20% error rate
for the top-5 and top-1 performance measures on ImageNet
[18] respectively. PoseNet was based on GoogLeNet which
achieved an error rate of 6% for the top-5 performance
measure [19]. The reason for utilizing a model with higher
image classification performance for transfer learning to our
task is that the early layers in the network are already tuned
very precisely to output highly usable features. In a similar
way that performance increases from having a high amount of
SIFT features for pose estimation, high-quality CNN features
increase performance for position regression.

Our model seeks to determine the position and orientation
from a single RGB image in both indoor and outdoor settings.
To accomplish this, we modify the Inception-V4 architecture
as follows:

∙ Remove the final softmax classification layer.
∙ Add two regression layers after the final average pooling

layer in order to output position (x,y,z) and orientation as
a quaternion (w,p,q,r) respectively.

The overall schema for our network is then as shown in Fig.
2. Note that the stem portion of the network is identical to the
stem described in [17].

2.2. Importance of Transfer Learning

It should be noted that training for the task of position
regression directly with such a large model is extremely
impractical. Due to a large number of parameters, an infeasible
amount of labeled training data would have to be collected.
Additionally, the network would likely be prone to over-
fitting. Transfer learning provides a simple way to avoid these
issues since it initializes the network weights with known
useful starting points. This allows the network to more quickly
learn to accomplish the final task and lowers the required
amount of training data significantly compared to training
from scratch. As the PoseNet authors discussed, the choice
of the dataset to train the original network with can make a
significant difference in how quickly the model approaches a
good solution.

Fig. 2. Overview of Position Regression Network Schema.

2.3. Training

The problem of regressing a position from a single RGB
image can be framed as in equation 1 where 𝐼𝑛 is an input
image to the mapping function 𝑓(𝐼𝑛). This mapping function
is learned and approximated by a neural network whose
architecture is as described in Fig. 2, and maps from the input
RGB image to a position vector 𝑃𝑛 = [𝑥, 𝑦, 𝑧, 𝑤, 𝑝, 𝑞, 𝑟]𝑇 .

𝑓(𝐼𝑛)⇒ 𝑃𝑛 (1)

In order to let the network learn the mapping, it is necessary
to formulate a loss function. To this end, we use the same loss
function as [14] which is described in Equation 2.

𝐿𝑖 = ∥�̂�− 𝑥∥2 + 𝛽

∥
∥
∥
∥
𝑞 − 𝑞

∥𝑞∥
∥
∥
∥
∥
2

(2)

This is simply the sum of the L2-norm of the position and
orientation along with a scaling parameter 𝛽. Here, �̂� is the
predicted position component of the output vector 𝑃𝑛, while 𝑥
is the ground truth position label. Similarly, 𝑞 is the predicted
quaternion component of the output vector 𝑃𝑛, and 𝑞 is the
ground truth label. As in [14], 𝛽 is hand picked to push the
loss values for position and orientation to be roughly equal.

Adam [20] was chosen as the optimization function, which
varies from [14], as we found Adam to be substantially more
stable and require less hyperparameter tuning than Stochastic
Gradient Descent. For Adam, we used an initial learning rate
of 10−4 while leaving the rest of the hyperparameters as
suggested in [20].
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3. APPLICATION TO THE KIDNAP PROBLEM

In order for our localization network to be useful for
application to the kidnap problem, we developed a simple
integration architecture (Fig. 3) that can be used with most
existing probabilistic localization algorithms.

Fig. 3. Overview of integration architecture.

The neural network runs separately from the rest of the
localization or SLAM architecture which allows for enhanced
flexibility and modularity. For our tests we used adaptive
Monte Carlo Localization (AMCL) [21], however, any prob-
abilistic localization method could be used. AMCL uses a
particle filter to track the pose of a robot against a known
map. Normally, a user must enter an initial estimate of the
position of a given robot in the map to initialize the particle
filter. However, using the architecture shown in Fig. 3, it is
possible to feed AMCL the output of our neural network and
initialize the particle filter automatically. Through qualitative
analysis, we found that this was able to correctly initialize the
robot consistently. Since probabilistic localization algorithms
such as [21] do not require precise initialize estimates, they
make the perfect pairing with our neural network model for
real world usage.

4. EXPERIMENTS AND RESULTS

In this section, we first describe our dataset for real-world
kidnap resolution evaluation. Next, we present an evaluation
of our fully integrated system over our dataset. Last, we show
a direct comparison to the current state-of-the-art over several
publicly available datasets and discuss run-time of our model.

4.1. Data Collection

We used the TurtleBot robotics development platform to
collect the data used to train our model. The device consisted
of a Kobuki base, a laptop computer, and an RGB-D camera.
The platform was controlled with via ROS Kinetic [22] and
several Python based ROS nodes to facilitate image grabbing
and labeling.

For the location of our dataset, we chose a hallway where
there was limited sunlight as it interferes with the IR sensor

on all RGB-D cameras. The TurtleBot was driven along the
hallway manually several times. A Python based ROS node
was used to save the position, orientation, and the view of
the RGB-D camera every 0.5 seconds. A total of 1535 images
were gathered, with 1152 used for training, and 383 used to
evaluate the efficacy of the model.

Fig. 4. Example pictures from our dataset. Despite the similarity of many
of our images, our model was able to recover position and orientation data
accurately.

The six degree of freedom positional data was gathered
through the use of the Cartographer [23] SLAM system. We
chose to use SLAM as our ground truth label source as it
shows the applicability to real world mobile robotics setups.
Mapping of the dataset location was done in parallel with data
collection.

Fig. 5. Map of the localization area for our dataset

However, there were some limitations to the ground truth
accuracy of the dataset. The RGB-D camera information is
noisier and less accurate than a laser scanner. The wheel
odometry sensors in the TurtleBot, while accurate, suffered
from some loss of precision due to wheel slip caused by the
smooth hallway surface. This problem was most commonly
observed when making large turns. These inaccuracies caused
slight drift during self-localization but were automatically
corrected by loop closure algorithms in the mapping software.
Using a real laser scanner would allow for more accurate
SLAM and thus better ground truth labels for the images.
Even with these challenges, however, we were still able to
accurately estimate the robot’s position given novel images
from the test set.

4.2. Evaluation for Kidnap Resolution

In order to evaluate the efficacy of our model for real world
kidnap resolution, we evaluated the accuracy of the position
predictions over the test set of our dataset described in section
4.1 (Table 1).

Since probabilistic localization approaches such as AMCL
can take noisy initial estimate and quickly converge to the
correct location, we found that our model was able to produce
initial position estimates that were consistently close enough
to the true position for AMCL to converge. Out of 20 tests, the
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robot was successfully able to initialize the particle filter for
AMCL and localize itself globally on its first try 16 times
(80% success rate). If the robot is allowed to rotate and
average its position estimates from the network, we found the
number of successful attempts rises to 95%. Alternatively, we
tried feeding multiple random crops of a single view into the
network. While this approach did improve performance (85%
success rate), it did not improve performance nearly as much
as averaging the outputs over multiple views. These results are
summarized in Table 2.

TABLE 1
KIDNAP RESOLUTION ACCURACY.

– Position Orientation

Median Error 0.59m 0.77∘

TABLE 2
KIDNAP RESOLUTION PERFORMANCE.

Prediction Method Successful Unsuccessful Success Rate

Single View 16 4 80%

Multiple Crops 17 3 85%

Average Over Views 19 1 95%

4.3. Comparison to State-of-the-Art

Since PoseNet [14] is a novel approach to localization, it
is the only direct comparison that can be made to our model.
In order to show improvement over PoseNet, we compared
the position and orientation accuracy of their model to that of
our own model on the Kings College [24] and 7-Scenes [25]
(Chess, Office, and Stairs) datasets. The Kings College dataset
consists of images taken in an area of 5, 600 meters2 which
were then labeled with 6-DoF positions using structure from
motion techniques. The 7-Scenes dataset is a collection of
tracked RGB-D camera frames in seven small areas, however,
we utilize only three of these scenes (Fig. 6).

Fig. 6. 3D model of 7-Scenes selected datasets. Left to right: Chess, Office,
Stairs.

Testing showed our model had, in general, a 22% relative
improvement in position accuracy, and a 51% relative improve-
ment in orientation accuracy over [14]. The results from our
test are summarized in Table 3 (the relative improvement for
position and orientation are shown under our models results).
The substantial orientation improvement is due largely to more
informative lower level features that are extracted from the
Inception-V4 base of our model.

TABLE 3
COMPARISON TO STATE-OF-THE-ART ON SELECTED DATASETS

Model
Kings

College
Chess Office Stairs

Conv.

Nearest

Neighbor

3.34m,5.92∘ 0.41m,11.2∘ 0.49m,12.0∘ 0.56m,15.4∘

PoseNet 1.92m,5.40∘ 0.32m,8.12∘ 0.48m,7.68∘ 0.47m,13.8∘

Ours
1.46m,2.67∘

+24%,+51%

0.25m,4.02∘

+21%,+50%

0.38m,3.69∘

+21%,+52%

0.38m,10.2∘

+19%,+26%

4.4. Runtime

Unlike alternative approaches to the kidnap problem, such
as scan matching, which become slower as the map size
increases, our neural network has a constant time runtime of
≈ 11ms on a CPU (Quad Core Intel Core i7-6700 @3.4GHz)
regardless of the map size. The reason for this constant
runtime is that a single forward computational pass through
the network per input image is all that is required. Since the
input data size does not change, and the network parameters
and model do not change after training, the runtime remains
constant. This ensures our approach is real-time and can run
at over 60 frames per second on only a CPU.

TABLE 4
RUNTIME COMPARISONS BY METHOD

Method Runtime

Single Image ≈ 11ms

Multiple Crops ≈ 66ms

Multiple Views ≈ 66ms

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented an implementation of
visual-based 6-DoF self-localization using deep learning, as
well as an integration for use with probabilistic localization
algorithms that provides accurate kidnap resolution as well as
global metric initialization on mobile robots. We demonstrated
a quantitative 22% increase in position accuracy and a 51%
increase in orientation accuracy compared to [14]. We have
also evaluated global metric initialization using images from
our dataset, reaching 80% accuracy with a single image input,
85% with multiple crops of a single image, and 95% accuracy
with multiple views.

For further development, we may also apply our position
regression network to the task of visual loop closure. If graph
based SLAM is used such as [26], our position regression
network can be used to provide loop closure proposals by
comparing the output of the network for every camera frame
against known visited positions. If the euclidean distance
between two nodes joined by a non-sequential edge is below
some threshold, it can be considered as revisiting a known
location and be used for loop closure. We leave this imple-
mentation for future work.
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